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Inactivation of the Prefrontal Cortex or Hippocampus Differentially Affects Predator-
Induced Fear Memories and Blocks Non-Stressful Memory Impairments 

 

Joshua D. Halonen 

ABSTRACT 
 

The neural pathways underlying the symptoms of Post Traumatic Stress Disorder 

(PTSD) have not been fully elucidated. Intrusive memories, persistent anxiety and other 

cognitive deficits have been attributed to maladaptive or otherwise aberrant processing in 

specific brain regions, including the hippocampus, amygdala and prefrontal cortex. Our 

laboratory has developed an animal model of PTSD which results in the enhancement of 

memory for a place associated with exposure to a predator, anxiety-like behavior, 

increased startle and impaired memory in a non-aversive memory task.  To better 

understand how the interaction of the hippocampus and prefrontal cortex contribute to the 

different symptoms of the disorder, we investigated the transient inactivation of each 

structure during an intense stressor.  Our results show that long-term contextual fear 

associations involve activity in both the hippocampus and the prefrontal cortex, but only 

the prefrontal cortex is involved in cued fear memories as well.
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Chapter One: Background 

Multiple Memory Systems 

The idea that brain structures network with one another during learning has lead 

to a better understanding of the multiple systems that mediate the formation of memories 

(McDonald & White, 1993; McDonald & White, 1995; McDonald, Devan, & Hong, 

2004; Sutherland, McDonald, Hill, & Rudy, 1989; Kim, Lee, Han, & Packard, 2001; 

Packard & Cahill, 2001; Packard & Teather, 1998; Packard, Hirsh, & White, 1989; 

Poldrack & Packard, 2003).  Although there is debate among researchers about the 

distinctions between which brain structures are involved in particular memory functions, 

multiple memory theory is accepted as the nature of memory processes (Meeter, 

Veldkamp, & Jin, 2009; Weber et al., 2005).  Neural networks orchestrate distinct types 

of skill learning, declarative neutral and emotional memories in parallel.  Individual 

structures process information and communicate with other structures to form a memory 

and influence behavior to later stimuli. 

Strong emotional experiences have powerful effects on the formation of memory, 

often facilitating durable memories.  People who experience acute trauma and respond 

with intense fear, helplessness or horror and then relive the trauma through intrusive 

flashback memories are prone to be diagnosed with PTSD.  Not everyone exposed to 

trauma develops PTSD, but in those individuals that develop the disorder, it seems the 

abnormally durable memory of a particular event comes at the cost of concentration and 
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memory for trauma-neutral information (Moores et al., 2008; Gil, Calev, Greenberg, 

Kugelmass, & Lerer, 1990). The following sections will briefly outline PTSD and the 

paradox between emotional enhancement of traumatic memory and impairment of post-

trauma working memory, followed by a summary of the brain structures implicated in 

these phenomena. 

 

Post-Traumatic Stress Disorder 

One of the diagnostic criteria of PTSD is experiencing a traumatic event 

(McNally, 2003; Moores et al., 2008).  To be considered “traumatic,” the event must pose 

an actual or at least a perceived threat to the individual’s physical well being and cause a 

sense of loss of control. Individuals diagnosed with PTSD experience trouble 

concentrating and functioning in their daily lives.  These symptoms are exacerbated by 

reminders of the trauma which trigger intrusive memories (Bryant, 2003; Reynolds & 

Brewin, 1999).  Accordingly, individuals with PTSD make great efforts to avoid stimuli 

that remind them of their trauma.  While the type (rape, combat, natural disaster, etc.) and 

characteristics (duration, intensity, or stage of life) of the trauma (Heim & Nemeroff, 

2001; Stam, 2007) play a role in whether or not an individual will develop PTSD, only 

about 25% of individuals who are exposed to trauma develop the disorder (Yehuda, 

2001).  This supports the hypothesis that there is some fundamental difference between 

individuals that do and individuals that do not develop the disorder. 

One criticism of the reports of cognitive impairments in PTSD patients is that 

often these investigations report high comorbidity with major depressive disorder (MDD) 

and a history of substance abuse in PTSD groups, making it difficult to attribute the 
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cognitive deficits to a single cause.  Cognition can be negatively affected by both MDD 

(Veiel, 1997) and substance abuse (Goldman, 1999; Goldman, Brown, Christiansen, & 

Smith, 1991).  In order to control for these factors Neylan et al. (2004) excluded 

individuals with MDD or substance abuse and found no differences between PTSD 

patients and controls on measures of cognitive functioning, including assessments of 

attention.  These findings suggest that deficits in cognitive functioning may not be a 

characteristic of PTSD; rather, they could be a predisposition to mental illness in general.   

Enhancement 

The sights, sounds, or even smells related to trauma can evoke a powerful 

memory.  In patients with PTSD reminders of the traumatic event can lead to reliving the 

initial experience, commonly referred to as a “flashback”.  In order to conceptualize these 

flashbacks, researchers have put forth the notion that negative emotion is associated with 

information learned around the time of a trauma (Ehlers & Clark, 2000).  Thus, when 

presented with a sensory cue associated with negative emotions people with PTSD have 

anxiogenic intrusive memories specific to the trauma (Diamond, Campbell, Doan, & 

Park, 1999; Diamond, Park, & Woodson, 2004; Ehlers, Hackmann, & Michael, 2004; 

Ehlers & Steil, 1994).  These intrusive memories can lead people with PTSD to avoid 

reminders of the trauma because of the intense anxiety they cause (Burstein, 1985) and 

negatively affect their daily life functioning, as mentioned earlier.  

Understanding how memory is enhanced by emotion has long been of interest to 

psychologists. One type of this enhancement has been labeled a “flashbulb memory” 

(Berntsen & Rubin, 2006; Brown & Kulik, 1977; Conway et al., 1994; Diamond, 

Campbell, Park, Halonen, & Zoladz, 2007).  In this form of memory, strong emotion 
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enhances the salience of the sensory information of an experience resulting in a powerful 

form of learning (Christianson, 1992; Richter-Levin & Akirav, 2003; Diamond et al., 

1999; Diamond et al., 2004; Ehlers & Clark, 2000).  Thus, emotion enhances recall 

compared to learning the same information under non-emotional circumstances.  People 

with PTSD show notable differences in brain activity in the amygdala, hippocampus and 

the prefrontal cortex as compared to controls (Bremner, 1999).  The amygdala has been 

heavily implicated in PTSD and a vast literature exists describing the role it plays in 

emotion regulation and fear conditioning.  The hippocampus and prefrontal cortex are 

critical for learning and memory (Goldman-Rakic, 1987; Morris, Garrud, Rawlins, & 

O'Keefe, 1982; O'Keefe & Speakman, 1987).  The interactions among these structures 

during an intensely emotional event, such as a trauma, play a role in the enhancement of 

memory.  In summary, the hippocampus and prefrontal cortex in conjunction with the 

amygdala are likely candidates for the neural processing responsible for forming 

flashbulb memories. 

Impairment   

Many investigators have suggested that intrusive memories are detrimental to 

concentration and working memory in PTSD patients (Bremner, Vermetten, Afzal, & 

Vythilingam, 2004; Chemtob et al., 1999; Halligan, Clark, & Ehlers, 2002; Jelinek et al., 

2006; Kivling-Boden & Sundbom, 2003; Litz et al., 1996; McFarlane, Weber, & Clark, 

1993; Schonfeld & Ehlers, 2006; Sutker, Winstead, Galina, & Allain, 1991; Tapia, 

Clarys, El Hage, Belzung, & Isingrini, 2007; Vasterling, Brailey, Constans, & Sutker, 

1998b; Yehuda et al., 1995).  Chemtob et al. (1999) examined the ability of Vietnam 

veterans with PTSD to attend to a primary digit detection paradigm while concurrently 



www.manaraa.com

 

5  

viewing either neutral or Vietnam –related distracters, and found that PTSD patients’ 

performance was worse than other groups of combat exposed or psychopathology 

patients when trauma related pictures were presented.  These and other results (Bremner 

et al., 1995) indicate that intrusive memories can interfere with daily functioning in 

PTSD patients by reducing their ability to pay attention to information like names and 

other pieces of information.  Physiological studies using event-related potentials (ERP) 

suggest that trauma-neutral information is abnormally processed, such that PTSD 

augments the way people evaluate the significance of a stimulus and the subsequent 

executive processes associated with working memory (McFarlane et al., 1993; Galletly, 

Clark, McFarlane, & Weber, 2001).  The stimulus is then processed as a danger signal, 

rather than a neutral environmental stimulus.  

Stress can have detrimental effects on hippocampus-dependent learning and 

memory. In fact numerous studies have reported declarative and working memory 

impairments, along with deficits in attention, in PTSD patients (Bremner, Krystal, 

Southwick, & Charney, 1995; Bremner et al., 1993; Gilbertson, Gurvits, Lasko, Orr, & 

Pitman, 2001; Golier et al., 2002; Jenkins, Langlais, Delis, & Cohen, 1998; Sachinvala et 

al., 2000; Moradi, Doost, Taghavi, Yule, & Dalgleish, 1999; Uddo, Vasterling, Brailey, 

& Sutker, 1993; Vasterling, Brailey, Constans, & Sutker, 1998; Barrett, Green, Morris, 

Giles, & Croft, 1996).  However, some researchers have found no differences between 

individuals with PTSD and healthy controls or subjects when not using trauma related 

material to influence cognitive functioning (Barrett, Green, Morris, Giles, & Croft, 1996; 

Crowell, Kieffer, Siders, & Vanderploeg, 2002; Neylan et al., 2004; Zalewski, 

Thompson, & Gottesman, 1994).  This means that not all cognitive capabilities of PTSD 
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patients are always affected by the disorder and they are able to perform some tasks 

normally. 

 

Animal Models of PTSD 

Although PTSD remains a disorder that is unique to humans, the limitations of 

human research necessitate a valid animal model of PTSD.  Such a model would 

potentially allow investigations into the factors that contribute to the disorder’s 

development, as well as, the neurobiological progression of the disorder.  This would 

pave the way to study effects of therapeutic agents on the treatment of the disorder.  

Stressors such as electric shock, immobilization (i.e., restraint stress), underwater trauma, 

and predator stress have been used to produce behavioral effects in rodents that are 

comparable to those observed in humans with PTSD.  However, the fact that many of 

these models do not reliably generate the range of symptoms displayed in PTSD patients 

warrants a set of criteria that all animal models of PTSD should meet before they are 

accepted by the scientific community.  According to Yehuda & Antelman (1993) animal 

models of PTSD should attempt to incorporate five key aspects: 1) Very brief stressors 

should be capable of inducing the biological and behavioral sequelae of PTSD.  2) The 

stressor should be capable of producing the PTSD-like sequelae in a dose-dependent 

manner because the disorder is produced by a threshold “dose” of stress in humans.  3) 

The stressor should produce biological alterations that persist over time or become more 

pronounced with the passage of time.  4) The stressor should induce biological and 

behavioral alterations that have the potential for enhanced or reduced responsiveness to 

different aspects of the environment.  5) Variability in response to a stressor should be 
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present either as a function of experience (e.g., prior history and post-stress adaptations), 

genetics, or an interaction of the two (Yehuda & Antelman, 1993, p. 480-482).  Once an 

animal model satisfies these criteria, the behavioral and biological consequences of 

trauma can be further elucidated.  

To model PTSD, most investigators expose rodents to some form of stress and 

then assess the effects of that stress on physiology and behavior.  The investigators 

typically compare the entire stressed groups to control animals.  Cohen, Zohar, & Matar 

(2003) argued that some animals appear to be more vulnerable to the stress than others, 

which supports the fifth criterion in Yehuda & Antelman’s (1993) manuscript.  Given this 

argument, Cohen et al. (2003) examined the differential response of rats to intense stress 

by exposing 150 rats individually to a cat for a period of 10 minutes and then examined 

their behavior on the elevated plus maze one week later.  As a group, the stressed rats 

exhibited greater levels of anxiety on the elevated plus maze, relative to controls.  

Interestingly, within the stressed group of rats, some did not show elevated levels of 

anxiety and freely explored the open arms of the maze.  Therefore, the investigators used 

cutoff behavioral criteria to divide the stressed rats into well-adapted (WA) or 

maladapted (MA) rats, based on time spent in the closed arms and entries into the open 

arms.  Physiological analyses indicated that the MA rats exhibited greater levels of 

adrenal hormones shortly after the stress compared to WA rats.  The MA rats also 

displayed greater sympathetic nervous system tone and lower vagal tone based on lower 

heart rate variability, showing higher high-frequency and lower low-frequency 

component of their heart rates.  Cohen and colleagues have replicated and extended this 

work by reporting similar effects on other behavioral measures, such as the acoustic 
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startle response; as well as the use of a different stressor (underwater trauma) to manifest 

similar results (Cohen, Zohar, Matar, Kaplan, & Geva, 2005; Cohen et al., 2004).  

Collectively, these findings support the notion that stress does not affect all rodents the 

same; rather, some appear to be more vulnerable to the effects of stress.  These studies 

relate to humans in that not every traumatized individual reacts the same way to stress 

and that trauma can come in different forms.    

The study of varying types, intensities, and durations of stress have also provided 

valuable insight into the physiological and behavioral changes in rodents.  Chronic 

restraint stress (6 hrs/day for 21 days) leads to the remodeling of hippocampal dendrites 

(Magarinos, McEwen, Flugge, & Fuchs, 1996; Magarinos & McEwen, 1995) and 

impairments of hippocampus-dependent, spatial memory (Conrad, Galea, Kuroda, & 

McEwen, 1996; Luine, 1994; Luine, Villegas, Martinez, & McEwen, 1994).  Other 

investigators have studied the effects of a small number of stress sessions or a single 

stress session with periodic reminders of the “trauma” on long-term behavior in rodents. 

(Pynoos, Ritzmann, Steinberg, Goenjian, & Prisecaru, 1996) exposed mice to footshock 

(2 mA for 10 seconds) and then assessed their behavioral response 1, 21, or 42 days later.  

Some of the stressed mice were reminded weekly throughout the experiment by placing 

them back in the apparatus where they received the shock.  Only mice that were given 

reminders of the shock exhibited increased anxiety on the elevated plus maze 1, 21, and 

42 days after being shocked, but they did not demonstrate an exaggerated startle response 

until six weeks post-stress. Servatius and colleagues (Servatius, Ottenweller, Bergen, 

Soldan, & Natelson, 1994; Servatius, Ottenweller, & Natelson, 1995; Adamec & 

Shallow, 1993) also observed a delayed sensitization of startle following exposure to 
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repeated restraint and tailshock stress.  These findings have been inconsistent, stress may 

induce a delayed sensitization of rats’ startle response, but the timeline for this effect is 

unclear. 

An investigation by Adamec & Shallow (1993) found heightened anxiety-like 

behavior in rats following a single five minute exposure to a cat, as indicated by a 

reduction in the ratio of time spent in the open- to closed-arms on the elevated plus maze 

up to three weeks later.  This effect is theoretically based on NMDA-receptor-dependent 

plasticity in the amygdala, which is responsible for the lasting effects of cat exposure on 

anxiety (Adamec, Muir, Grimes, & Pearcey, 2007).  Further work by Adamec and 

colleagues (Adamec, Burton, Shallow, & Budgell, 1999a; Adamec, Burton, Shallow, & 

Budgell, 1999b; Blundell, Adamec, & Burton, 2005) has supported the argument that 

these effects are mediated, in part, by NMDA-receptor-dependent plasticity.  When rats 

were administered competitive NMDA-receptor antagonists 30 minutes prior to cat 

exposure, it blocked lasting increases in anxiety-like behaviors.  However, these drugs 

were incapable of blocking the stress-induced increase in anxiety-like behaviors if they 

were administered 30 minutes after cat exposure, suggesting that they had to be present at 

the time of the stress to be effective.   

Studies have observed NMDA-receptor-dependent synaptic plasticity in the 

amygdala as a result of fear conditioning (Bauer, Schafe, & LeDoux, 2002; Rogan, 

Staubli, & LeDoux, 1997), and the administration of NMDA-receptor antagonists  within 

the ventricular system (Fanselow, Kim, Yipp, & De Oca, 1994; Kim, DeCola, Landeira-

Fernandez, & Fanselow, 1991; Kim, Fanselow, DeCola, & Landeira-Fernandez, 1992) or 

amygdala (Maren, Aharonov, Stote, & Fanselow, 1996) prevents the formation of fear 
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memories in rodents.  These findings support the idea that stress induces NMDA-

receptor-dependent plasticity, probably within the amygdala, results in heightened 

anxiety-like and fear behavior.     

Our laboratory has recently developed a novel form of modeling PTSD in rats 

using the combination of predator exposure and restraint, in conjunction with daily social 

instability (Zoladz, Conrad, Fleshner, & Diamond, 2008).  In this model two stress 

sessions with social instability were sufficient to produce enhanced anxiety-like behavior 

on the elevated plus maze, increased startle and an impaired ability to recognize a 

familiar object.  Animals that went through the trauma-like experiences also exhibited 

differences in their hypothalamic-pituitary axis and cardiac functions compared to 

controls.  The following experiments were designed to manipulate rats’ information 

processing in specific brain regions to exacerbate or mitigate the expression of PTSD-like 

symptoms.  These experiments will also extend our model by manipulating the number 

and type of stressors to investigate the effects on contextual and cued fear memory, and 

other behavioral consequences, that a single cat and immobilization session have on rats.  

 

Neuroanatomy 

Hippocampus 

Hippocampal divisions are based primarily on the cellular organization and 

neuroanatomical features of each region conserved across mammals.  The perforant 

pathway is fibers from the entorhinal cortex that terminate in the dentate gyrus and CA3 

regions.  Schaffer collaterals, which are axons from the CA3 pyramidal cells, project to 

CA1 pyramidal cells.  Neurons in the CA1 project to entorhinal cells, which relay to the 
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cortex.  According to some reports, the CA1 region of the hippocampus plays an 

integrative role in memory because it receives input from various modalities and outputs 

to the cortex (Akirav, Sandi, & Richter-Levin, 2001; Artola et al., 2006; Cao, Chen, Xu, 

& Xu, 2004; Kim, Foy, & Thompson, 1996).  

The capacity of the hippocampus to receive and integrate information from 

different senses allows the hippocampus to generate a coherent representation of the 

context through the associations made between the information according to Shapiro & 

Eichenbaum (1999).  Thus, the hippocampus is important for acquiring new declarative 

memories (Bunsey & Eichenbaum, 1996; Eichenbaum, 2004) which can be either 

emotional or neutral in nature.  In laboratory animals, damage to the hippocampus seven 

days before contextual learning (Selden, Everitt, Jarrard, & Robbins, 1991) or muscarinic 

cholinergic receptor antagonism of the hippocampus fifteen minutes prior to the learning 

(Anagnostaras, Maren, & Fanselow, 1999; Selden, Everitt, Jarrard, & Robbins, 1991) 

impair performance on contextual fear conditioning. 

 

Prefrontal Cortex 

The prefrontal cortex is particularly important for flexible behavioral reactions 

(Aston-Jones, Rajkowski, & Cohen, 2000), and has demonstrated involvement in 

sustained attention in rodents (Granon, Hardouin, Courtier, & Poucet, 1998).  The 

prefrontal cortex monitors incoming environmental information and initiates appropriate 

behavior based on the circumstances at any given time (Dalley, Cardinal, & Robbins, 

2004).  Trauma-related memories in abused women result in overactive prefrontal cortex 

(Bremner et al., 2005).  Extinction of fear conditioning in rodents has also been shown to 
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depend on the prefrontal cortex (Herry & Garcia, 2002; Morgan & LeDoux, 1999; Quirk, 

Garcia, & Gonzalez-Lima, 2006; Sotres-Bayon, Cain, & LeDoux, 2006).  These effects 

have been attributed to a failure of the prefrontal cortex to suppress attention to trauma-

related stimuli subsequently allows over excitability of the amygdala and results in 

resilient, extinction resistant memories (Gilboa et al., 2004).  

The ventromedial area of the prefrontal cortex, including the prelimbic and 

infralimbic sections have strategic connections involved in the extinction of fear 

behaviors in rodents (Amat et al., 2005; Dalley, Cardinal, & Robbins, 2004; Ishikawa & 

Nakamura, 2003; Vertes, 2004).  Direct neural pathways with the hippocampus and the 

amygdala, along with lower brainstem areas that are involved in the regulation of 

neurotransmitter systems such as the ventral tegmental area, dorsal raphe nucleus and 

locus coeruleus support the role for the prefrontal cortex in the regulation of behavior 

(Burette, Jay, & Laroche, 1997; Herman, Prewitt, & Cullinan, 1996; Irle & Markowitsch, 

1982; Ishikawa & Nakamura, 2003; Shu, Wu, Bao, & Leonard, 2003).  Thus, the 

prefrontal cortex likely plays an integral role in the formation of memories and 

behavioral reactions to environmental stimuli. 

Hypotheses 

In order to gain insight into the multiple components of memory researchers have 

utilized the GABA agonist muscimol to suppress neural activity in specific structures.   

Understanding the functional interactions among the prefrontal cortex and hippocampus 

during a traumatic experience may lead to effective diagnostic and treatment strategies 

for PTSD and other anxiety disorders.  
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The present experiments were designed to selectively and transiently suppress 

activity in the ventromedial portion of the prefrontal cortex or CA1 region of the 

hippocampus before conditioning rats in a single stress model of flashbulb memories. 

This model generates a durable fear association to a context and produces high levels of 

anxiety along with deficits in non-aversive memory of intact rats that receive inescapable 

intense predator stress.  To test the extent of interactions between the hippocampus and 

prefrontal cortex in the formation of long-term fear memories, anxiety-like behaviors, 

startle and general non-emotional memories, muscimol was used to inactivate the neural 

activity of these structures at the time of the inescapable cat exposure.  

My first hypothesis was that suppression of the prefrontal cortex at the time of 

emotional learning would allow more amygdalar activation than during vehicle treatment 

rendering a more emotional memory.  This should have facilitated a more durable and 

salient fear memory and increased anxiety, rendering a more fearful animal in the 

presentation of the context and cues associated with a strong stressor and a more anxious 

animal in general.  My second hypothesis was that suppressing the hippocampus before 

the stress would weaken the formation of contextual fear. However, these animals should 

have exhibited heightened anxiety like behaviors, but maintained equivalent cognitive 

capacity as compared to vehicle stress animals.  All vehicle treated stressed animals were 

hypothesized to show heightened fear, anxiety, and poorer object recognition memory as 

compared to non-stressed controls.  

The general hypothesis was that in both humans and rats the hippocampus and 

prefrontal cortex interact to mediate memory and anxiety.  During a traumatic experience 
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each structure provides unique processing, such that the inactivation of each individual 

area during trauma would influence different aspects of memory and anxiety.   
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Chapter Two: Experiments 
 

Methods 
Design 

Hippocampal and prefrontal manipulations were conducted in 2 experiments 

based on the targeted brain structure.  Each of the experiments utilized a 2x2 factorial 

design with artificial cerebral spinal fluid (aCSF; Harvard Laboratories) used as vehicle 

or muscimol (1µg/µl), and immobilization with cat exposure (Cat) or homecage (No Cat) 

as the levels.  

Animals  

A total of 78 male Sprague-Dawley rats (Charles River) weighing 225-250g on 

arrival were acclimated to the vivarium and cage changes for at least 7 days before any 

experimental manipulations are conducted.  Rats were housed 2 per cage (standard 

Plexiglas – 46 x 25 x 21 cm) until surgery, after which they were singly housed.  Tap 

water and rat chow were available ad libitum.  The animal housing room was maintained 

at 20 ± 1° C with a humidity range of 60 ± 3%, and a 12hr light cycle (on at 0700 hr).  

All procedures were approved by the Institutional Animal Care and Use Committee at the 

University of South Florida. 

Surgery 

  On the day of surgery, rats were brought to the laboratory, where all surgical 

procedures were performed under aseptic conditions.  Rats were deeply anesthetized 

using isoflurane.  Their heads were shaved and placed level on a stereotaxic device.  
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After the skull was exposed, the topographical coordinates for the landmarks of bregma 

and lambda were recorded for targeting purposes.  All targets are in reference to the skull 

surface of bregma in millimeters and insertions were made with 26-gauge, stainless steel, 

guide cannulae (Plastics One Inc., Roanoke, VA). 

Target coordinates for the vmPFC were +2.7 anterior-posterior (AP), ±0.5 medial-

lateral (ML), and -5.0 dorsal-ventral (DV).  The target of the hippocampus was the dorsal 

CA1 region, and the coordinates used were -3.8 AP, ±3.0 L, -2.8 DV.  These target 

coordinates were based on the Paxinos & Watson rat brain atlas and pilot data.  Bilateral 

guide cannulae were held in place by dental cement and anchored to the skull with four 

skull-screws. Removable stylets projecting 1mm from the tip of the guide cannula were 

inserted and held in place with a screw-on dust cap (Plastics One Inc., Roanoke, VA) to 

keep the cannula patent. 

Infusions 

All animals were given one week to recuperate from surgery before data 

collection.  All infusion and behavioral procedures were performed between 0900-1500 

hours.  For three consecutive days, in order to acclimate the animals to the infusion 

procedure, animals were brought into the laboratory and given at least 30 minutes to 

adjust to the surroundings.  On the first day, the dust cap was removed and a mock 

injection tube placed on the cannulae pedestal to familiarize the rats to the sensation of 

the tube on their head.  The second and third day consisted of the removal the dust cap 

and stylet, and gently placing the injectors (Plastics One) in the guide cannulae.  A 

Harvard Apparatus pump (Holliston, MA) was connected to 25µl syringe injectors 

(Hamilton) by plastic tubing (Plastics One) and infused aCSF at a rate of 0.1µl/min for 3 
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minutes.  After the infusion, the pump was turned off and the fluid given 1 minute to 

diffuse before the dummy cannulae were replaced and dust cap screwed back on the top 

of the pedestal.  On the third day, aCSF or muscimol were administered.  

Histology 

 A total of 70 rats completed the battery of tests. Upon completing the behavioral 

tasks all animals were euthanized with an overdose of ketamine and xylaxine, cresyl 

violet was infused into the cannulae at a rate of 0.1µl/min for 5 minutes to allow visual 

inspection of cannulae placement.  The brains were extracted and flash frozen in 2-

methylbutane and the tissue was stored at -80°C until it was sliced in coronal sections in 

40µm sections on a Cryostat held at -16°C and mounted on microscope slides. After 

histological analysis of 30 representative samples four animals were eliminated for 

placement outside the target area. 

 

Behavior 

Stress Procedure.  Approximately 15 minutes after the rats were infused with 

aCSF or muscimol, they were placed in a dark fear conditioning chamber (25.5 x 30 x 29 

cm; Coulbourn Instruments; Allentown, PA) that consists of two aluminum sides, an 

aluminum ceiling, and a Plexiglas front and back covered with black plastic.  The 

chamber served as the context associated with a cat.  The floor consists of 18 stainless 

steel rods, spaced 1.25 cm apart.  Exposure to the chamber for three minutes terminated 

with presentation of a single 30-second, 74 dB 2500 Hz tone, which served as the 

auditory cue.  Animals in the cat groups were immediately immobilized using a plastic 

DecapiCone (Braintree Scientific; Braintree, MA) and then placed in a pie-shaped 
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Plexiglas enclosure (Braintree Scientific; Braintree, MA; 20 x 20 x 8 cm).  This container 

was placed inside a cage containing a female cat to keep the cat in close proximity to the 

rats.  To direct the cat’s activity to the container, a small amount of wet cat food was 

smeared on top of the container.  Rats then remained with the cat for one hour.  This 

procedure has been developed to produce a fear memory in rats to a context that is, 

otherwise, innocuous.  Animals in the no cat groups were placed back in their home 

cages for one hour. 

Fear Association.  Three weeks later, each rat was brought back to the laboratory, 

and allowed 30 minutes to acclimate to the environment.  After acclimation rats were 

placed in the same fear conditioning chamber as the one in which they were placed just 

before receiving the stress treatment 3 weeks earlier.  The freezing behavior of each rat 

was monitored by computer for five minutes.  Approximately 45-60 minutes after the 

contextual memory test, rats were individually placed in the light side (25 x 22.5 x 33 

cm) of a shuttle box (Coulbourn Instruments; Allentown, PA) that consisted of two 

aluminum sides, an aluminum ceiling, and a Plexiglas front and back, with the shuttle 

door in the closed position.  A house light was turned on, and a metal plate (21.5 x 21.5 

cm) placed on the floor to eliminate the sensation of the stainless steel rods beneath their 

paws.  These conditions reduce the similarities between the conditioning chamber context 

and the auditory cue testing chamber.  The rats remained in the light side of the shuttle 

box for a total of six minutes.  Our paradigm consisted of no tone present for the first 

three minutes, and introducing a tone (74 dB; 2500 Hz) for the last three minutes. This 

paradigm provides a measure for a novel context and a more direct measure of the cue 

memory.  Therefore, rats’ freezing behavior in response to the tone was considered as a 
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measure of their memory for the tone-cat association, independent of the context.  The 

amount of time freezing and fecal boli were recorded and considered as an index of fear.  

Freezing was measured by a 24-cell infrared activity monitor (Coulbourn Instruments; 

Allentown, PA), mounted on the top of the fear conditioning chamber, which uses the 

emitted infrared body heat image (1300 nm) from the animal to detect relative changes in 

movement.  Freezing was defined as periods of inactivity for more than three seconds, 

except for movement required for respiration.  A Microsoft Excel spreadsheet with a 

macro designed to analyze freezing behavior was used to calculate the total number of 

seconds spent freezing by each animal at 30-sec epochs divided by the total amount of 

time in the chamber, providing a percentage of time freezing for each animal.  The use of 

automated parameters have been employed by laboratories elsewhere (Lee & Kim, 1998) 

and have been shown to significantly correlate with time sampling observer methods 

often employed to assess freezing behavior (Kim, DeCola, Landeira-Fernandez, & 

Fanselow, 1991).   

Elevated Plus Maze (EPM; see Figure 1).  Twenty-four hours after the context 

and cue tests, all rats were brought to another room of the laboratory and subjected to the 

EPM assessment.  The EPM (Hamilton-Kinder; San Diego, CA) is an apparatus that has 

been used extensively to study anxiety-like behavior in rodents (Korte & De Boer, 2003).  

It consists of 2 open (10.80 x 51.17 cm) and 2 closed arms (10.80 x 51.17 cm) that 

intersect each other to form the shape of a plus sign.  The intersection area is 10.80 by 

10.80 cm, and the walls of the closed arms are 40.01 cm high.  The more time rats spend 

in the closed arms is considered to be indicative of anxiety-like behavior.  In other words, 

time spent in the open arms is considered risk-taking behavior, as it theoretically places 
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the rat in open view to predators and susceptible to danger.  Each rat was placed on the 

EPM for 10 minutes, and its behavior monitored by 48 infrared photobeams connected to 

a computer program (Motor Monitor) that analyzes the behavior.  The program enables 

the experimenter to assess the rats’ total movement, distance traveled in each area of the 

maze, distance traveled overall, and time spent in each area of the maze.  The primary 

measurement of concern is the percentage of time that each rat spends in the open arms, 

as compared to the closed arms.  The EPM was wiped down with 25% ethanol solution 

after removal of fecal boli between sessions to reduce odor between testing. 

 

Figure 1. Schematic Diagram of the Elevated Plus Maze  

 

Startle Response. Approximately one hour after the EPM assessment, all rats were 

subjected to tests of startle reflex.  To measure the startle, each rat was placed inside a 

restraint box that is inside of a larger startle monitor cabinet (Hamilton-Kinder; San 
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Diego, CA; 35.56 x 27.62 x 49.53 cm).  Within the recording chamber, the rat sits on a 

sensory transducer, which records startle reflexes.  The startle trial began with a 5-minute 

acclimation period, followed by the presentation of 24 noise bursts, eight from each of 

three auditory intensities (90, 100, and 110 dB).  The noise bursts were presented in 

sequential order (i.e. 8 bursts at 90 dB, followed by 8 bursts at 100 dB, etc.), and the time 

between each noise burst varied in a pseudorandom fashion between 25 and 55 seconds.  

Upon the commencement of the first noise burst, the startle apparatus provides an 

uninterrupted background noise of 57 dB.  Each startle reflex was recorded in Newtons, 

and the complete session lasted 16 minutes. 

 

Figure 2. Schematic Diagram of the Open Field Apparatus 

 

Object Recognition.  Twenty-four hours after the startle test, animals were 

returned to the laboratory. After acclimation animals were placed individually into an 

Open Field (see Figure 2). This field is a large, black walled, plastic box (Hamilton-

Kinder, San Diego, CA – 40 x 47 x 70 cm). It has an open top, and is in a light- and 
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sound-attenuated room for 5 minutes.  The rats’ behavior was monitored by a video feed 

to a computer program (Any Maze; Stoelting) and analyzed.  The program allows for 

assessment of the rats’ total distance traveled in each area of the open field (center and 

perimeter), total time spent in each area of the open field, rearing, and entries into each 

quadrant of the open field. This exposure served as habituation to the apparatus and 

provided an assessment of general behavior.  Another day after the five minute 

habituation trial, the animals were again brought back to the laboratory and re-exposed to 

the open field; but this time 2 identical objects were placed diagonally opposite to one 

another for the rat to explore for a total of 5 minutes (training phase).  Three hours later, 

rats were replaced into the open field, a replica of one of the original objects and a 

completely novel object were placed in the same orientation as the training procedure for 

5 minutes (testing phase).  The amount of time spent with the novel object was then 

recorded by Any Maze monitoring the head of the rat in relation to the objects in the field 

and served as an index of memory for the original familiar object.  Video files were also 

made for experimenter coding.  Rats normally spend more time with the novel object 

than with the familiar.  This paradigm is interpreted as a form of non-stressful memory.  

Statistical Analysis 

 Most of the data were analyzed through use of appropriate types of two-way 

analyses of variance (ANOVA).  A priori planned comparisons were tested with two-

tailed Student’s t-tests, between Cat and No Cat aCSF and muscimol treated groups in 

each behavioral test of the experiments.  Alpha was set at 0.05 for all analyses.  
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Results 

Fear Conditioning (see figures 3-6).  The 3-week fear conditioning retention tests 

(contextual fear conditioning, cue-based fear conditioning) were analyzed separately. 

Contextual fear conditioning freezing percentages, excluding the first 30-seconds and last 

minute of the 5-minute tests, were compared using a two-way ANOVA for each brain 

target, with Stress (cat or no cat) and Inactivation (aCSF or muscimol) serving as the 

between-subjects variables.  Cued fear conditioning was analyzed using the percent time 

spent freezing during the 3-minute tone presentation.  

Analysis of the vmPFC group’s contextual fear response at three weeks revealed a 

significant overall effect with F(3,31) = 7.80, p < 0.01.  A significant main effect of 

Stress was found (F(1,31) = 15.21, p < .01) with the stress procedure producing higher 

levels of freezing (M = 17.08, SEM = 2.02) compared to animals not receiving the stress 

procedure (M = 6.58, SEM = 1.18).  Inactivation also produced a significant main effect 

(F(1,31) = 7.15, p < 0.05), animals having aCSF infused into the vmPFC prior to 

conditioning expressed higher levels of freezing (M = 15.43, SEM = 1.86) than animals 

infused with muscimol (M = 8.23, SEM = 1.95).  The interaction between Stress and 

Inactivation was not significant with F(1,31) = 3.61, p = 0.07.  However, planned 

comparison two-tailed t-tests indicated that Stress rats with the vmPFC inactivated prior 

to conditioning froze (M = 10.92, SEM = 2.38) significantly (p < 0.05) less than Stress – 

aCSF animals (M = 23.25, SEM = 4.92); in addition, these animals froze significantly (p 

< 0.01) more than Unstressed – aCSF animals (M = 7.62, SEM = 1.60).  Analysis of the 

cued fear response of vmPFC targeted animals indicated no significant differences 

overall with F(3,31) = 1.03, p = 0.39. 
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Effects of Cat + Immobilization and vmPFC Inactivation on 
Contextual Fear Memory
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Figure 3. Inactivation of the vmPFC with muscimol before conditioning blocked the 

stress induced increase in freezing to the context 3-weeks later. (* p < 0.05) 

Effects of Cat + Immobilization and vmPFC Inactivation on 
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Figure 4. There was no effect of stress or inactivation on the cued freezing. 
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Analysis of variance for the CA1 targeted groups’ contextual fear revealed an 

overall significant effect with F(3,28) = 4.11, p < 0.05.  There was a significant main 

effect of both Stress (F(1,28) = 4.46, p < 0.05) and Inactivation (F(1,28) = 5.95, p < 

0.05).  In similar fashion to the vmPFC group, the stressed animals froze more (M = 

18.88, SEM = 3.12) than unstressed (M = 8.86, SEM = 3.58), and aCSF treated animals 

expressed more fear (M = 19.66, SEM = 3.22) than muscimol treated animals (M = 8.08, 

SEM = 3.49).  The Stress by Inactivation interaction was also not significant (F(1,28) = 

1.34, p = 0.26).  A similar pattern to the vmPFC group emerged in the CA1 group when 

analyzed using planned comparison t-tests.  Muscimol infused prior to the stress 

procedure (M = 10.35, SEM = 3.99) significantly reduced (p < 0.03) freezing compared 

to aCSF (M = 27.41, SEM = 5.91), which was also significantly greater than (p ≤ 0.05) 

aCSF unstressed animals (M = 11.90, SEM = 4.31).  The cued fear response in CA1 

targeted animals did show significant overall differences (F(3,31) = 3.65, p < 0.05); with 

no significant main effect of Inactivation (F(1,31) = .93, p = 0.34) or the Stress by 

Inactivation interaction (F(1,31) = 1.39, p = 0.25).  However, a significant main effect 

was observed in the Stress manipulation with F(1,31) = 8.10, p < 0.01; where the Stress 

procedure resulted in animals freezing more to the cue (M = 21.487, SEM = 3.11) than 

unstressed animals (M = 7.80, SEM = 3.67).  Planned comparison t-tests revealed the 

Stressed-aCSF animals froze significantly more (M = 29.65, SEM = 7.10) than both 

Unstressed-aCSF and –muscimol (M = 7.29, SEM = 2.75 and M = 8.31 , SEM = 2.26; p 

< 0.05).  However, Stressed-muscimol animals (M = 16.34, SEM = 3.21) were not 

significantly different from their Stressed-aCSF counterparts in percent time freezing to 

the tone (p = 0.096). 
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Effects of Cat + Immobilization and CA1 Inactivation on 
Contextual Fear Memory
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Figure 5. Muscimol inactivation of the hippocampus before conditioning blocked the 

stress induced increase in freezing to the context 3-weeks later. (* p < 0.05) 
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Effects of Cat + Immobilization and CA1 Inactivation on 
Cue Fear Memory
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Figure 6.  Stressed animals infused with aCSF into the hippocampus exhibited 

heightened cued fear conditioning after 3-weeks as compared to non-stressed rats.  

Animals infused with muscimol were not significantly different than any group. 

EPM (see figures 8 & 9). The data for the first five minutes of the ten minute test 

analyzed separately for each brain region using two two-way ANOVAs, comparing the 

percent time each group spent in the open arms or closed arms.  For the vmPFC group a 

significant overall difference for percent time spent in the open arms was found with 

F(3,30) = 5.22, p < 0.01.  There was a significant main effect of Stress (F(1,30) = 10.86, 

p < 0.01) with the stress procedure resulting in less percent time (M = 10.52, SEM = 

3.92) in the open arms as compared to animals not put through the procedure (M = 27.77, 

SEM = 3.48).  However, there was no significant main effect of Inactivation (F(1,30) = 

2.13, p = 0.16) or Stress x Inactivation interaction (F(1,30) = 2.56, p = 0.12) for the 

percent time spent in open arms.  The analysis of the percent time spent in the closed 
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arms for the vmPFC group indicated a significant overall effect with F(3, 30) = 6.23, p < 

0.01.  A significant main effect for Stress (F(1,30) = 18.49, p < 0.01) was found; 

however, no significant main effect of Inactivation (F(1, 30) = 0.02, p = 0.90) or Stress x 

Inactivation interaction (F(1,30) = 0.003, p = 0.96) were found.  Both the Stress-aCSF (M 

= 82.35, SEM = 6.77) and Stress-Muscimol (M = 82.87, SEM = 7.24) treated groups 

spent significantly greater percent time in the closed arms than the Unstressed-aCSF (M 

= 53.79, SEM = 5.77) and Unstressed-muscimol (M = 54.98, SEM = 6.38).  The CA1 

groups showed no significant overall differences in percent time spent in the open 

(F(3,30) = 1.60, p = 0.21) or closed arms (F(3,30) = 0.53, p = 0.68).  

Effects of Cat + Immobilization and Inactivation of vmPFC
 on Elevated Plus Maze
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Figure 7.  Inactivation of the vmPFC had no effect on stress effects on time spent in open 

or closed arms of the EPM. (*  indicates p < 0.05 comparing closed arms or open arms 

between stressed and unstressed rats)  
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Figure 8.  There was no overall effect of stress or inactivation on EPM behavior in the 

hippocampal manipulation.  

Startle Response (not shown).  For each rat, eight startle responses at each of three 

auditory intensities were averaged to create one data point per auditory intensity per rat.  

The data were analyzed using a mixed-model ANOVA, with Stress and Inactivation 

serving as the between-subjects variables and Intensity (90, 100, and 110 dB) serving as 

the within-subjects variable.  For each brain structure, only significant differences were 

found between startle intensities; with the vmPFC (F(2,66) = 85.30, p < 0.01) and CA1 

(F(2,60) = 86.54, p < 0.01) groups both expressing more startle as the intensities 

increased.  

Object Recognition (see figures 9 & 10).  The object recognition data were 

analyzed using two-way ANOVAs with the same between-subjects variables as before, 

with time spent with the novel and familiar objects as the within-subjects variables.  For 
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the vmPFC group an overall within-subjects trend was revealed for object preference 

(F(1,28) = 2.58, p = 0.12), with the Novel object (M = 18.79, SEM = 2.63) being 

investigated more than the Familiar object (M = 13.68, SEM = 1.53).  Planned 

comparison repeated measure t-tests were also used to investigate the effects of 

inactivating the brain structures during the stress procedure on this non-stressful memory.  

These tests indicated that each of the Unstressed-aCSF, Unstressed-muscimol, and 

Stressed-muscimol groups spent significantly (p < 0.05) more time with the Novel object 

(M = 19.78, SEM =2.05; M = 17.9, SEM = 1.93; M = 21.3, SEM = 5.38, respectively) 

than the Familiar object (M = 13.33, SEM = 1.16; M = 13.73, SEM = 0.83; M = 10.26, 

SEM = 1.78).  However, the aCSF-Stress animals showed no difference (p = 0.43) 

between the time spent with the Novel (M = 13.67, SEM = 1.01) and Familiar (M = 

13.33, SEM = 1.09) objects. 

 

 



www.manaraa.com

 

31  

Effect of Cat + Immobilization and Inactivation of vmPFC 
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Figure 9.  Only the vehicle treated stress animals did not investigate the novel object 

more than the familiar object. (* p < 0.05) 

The hippocampal manipulations showed a significant within-subjects difference 

for object preference as indicated by F(1,26) = 7.25, p < 0.05, with more time being spent 

with the Novel object (M = 18.40, SEM = 2.65) than the Familiar object (10.92, SEM = 

.99).  The planned comparisons for these groups showed similar patterns to that of the 

vmPFC results.  The only group not to show a significant preference for the Novel object 

(M = 17.8, SEM = 4.40) over the Familiar (M = 11.59, SEM = 1.48) was the aCSF-Stress 

group.  
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Effect of Cat + Immobilization and Inactivation of CA1 
on Novel Object Recognition 
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Figure 10.  Only the vehicle treated stress animals did not investigate the novel object 

more than the familiar object. (* p < 0.05) 

Fecal Boli (see figures 11 & 12).  The total number of fecal boli each animal 

produced for contextual and cued fear conditioning, EPM, Startle, Open Field, Object 

Training, and Object Recognition behavioral tests was averaged and analyzed using a 2 x 

2 ANOVA.  For the vmPFC group a significant overall difference was found (F(3,34) = 

4.91, p < 0.01).  There was a significant main effect of Stress with F(1,34) = 11.33, p < 

0.01, where the Stress groups (M = 10.75, SEM = 1.30) produced more boli than the No 

Stress groups (M = 5.02, SEM = 1.13).  Planned comparison analysis revealed that the 

Stress-aCSF group defecated more than both of the No Stress groups; however, the 

Stress-muscimol group was no different statistically from the Stress-aCSF group.  
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Effects of Cat + Immobilization and Inactivation of vmPFC
on Total Boli

B
ol

i

0

5

10

15

20

aCSF Muscimol

*

No Cat Cat No Cat Cat

 

Figure 11.  The stressed animals receiving vehicle infusions defecated more than the 

unstressed groups, but stressed animals receiving muscimol were not significantly 

different than any other groups. (* p < .05) 

Analysis of the hippocampal manipulations revealed a main effect of Stress 

(F(1,28) = 4.87, p < 0.05), with the Stress groups (M = 13.40, SEM = 1.87) defecating 

more than the No Stress groups (M = 7.31, SEM = 2.03).  Planned comparison t-tests 

indicated the Stress-aCSF (M = 14.56, SEM = 2.57) produced more boli than either of the 

No Stress groups (aCSF, M = 6.78, SEM = 2.57; and muscimol, M = 7.83, SEM = 3.15).   



www.manaraa.com

 

34  

Effects of Cat + Immobilization and Inactivation of CA1
on Total Boli
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Figure 12.  The stressed animals receiving vehicle infusions defecated more than the 

unstressed groups, but stressed animals receiving muscimol were not significantly 

different than any other groups. (* p < 0.05) 
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Chapter Three: Discussion 

Prefrontal Cortex 

 The most intriguing finding of these experiments was, counter to the hypothesis, 

infusion of muscimol into the prefrontal cortex resulted in lower freezing to the 

contextual fear conditioning tests.  While this finding is contrary to the hypothesis 

derived from the literature that the inactivation of the prefrontal cortex would result in a 

more active amygdala and produce a more robust fear memory, there is a similar finding 

in humans.  Combat veterans who received brain damage to the prefrontal cortex had 

significantly less occurrence of PTSD than those with damage to any other brain region, 

except the amygdala (Koenigs, et al., 2008).  The results of the present study are 

comparable to this finding in humans.  The prefrontal circuitry involved has been 

theorized to rely on the percept of control, such that in rats the infralimbic and prelimbic 

cortex orchestrate inhibitory influence over the dorsal raphe nucleus (DRN).  The DRN 

provides the majority of 5-hydroxytryptamine signaling to the rest of the brain.  It has 

been demonstrated that the vmPFC is important for controlling the DRN and that the 

construct of control mitigates these effects in rats (Christianson, Thompson, Watkins, & 

Maier, 2008; Amat, Paul, Watkins, & Maier, 2008; Baratta, Lucero, Amat, Watkins, & 

Maier, 2008; Baratta et al., 2007; Maier, Amat, Baratta, Paul, & Watkins, 2006; Amat, 

Paul, Zarza, Watkins, & Maier, 2006; Amat et al., 2005).  This design specifically set out 

to reduce the perception of control the animal had.  Then, why would inhibiting the 
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prefrontal cortex reduce the memory of the context and cue associated with 

immobilization and predator exposure?  Human imaging studies have provided evidence 

that the vmPFC is more likely responsible for attention (Geday & Gjedde, 2009). If this is 

the case in rodents then one possible explanation for the present finding is the animals 

were unable to attend to the context and the cue when the information would have 

normally been processed, and were then subsequently unable to recognize them as 

predictors of an aversive stimulus.  The regulation of emotional behavior by the PFC is 

two-fold.  That is, while electrical activation of the prelimbic areas stimulates the 

parasympathetic nervous system, infralimbic activity is associated with sympathetic 

nervous system stimulation (Powell, Watson, & Maxwell, 1994).  Thus, the obtained 

results could be due to more consistently ventral placement of the cannula, resulting in a 

more blunted emotional response at the time of stress.  

The stressed animals in the vmPFC group displayed more anxiety-like behaviors 

on the elevated plus-maze.  This demonstrates the single-stress paradigm is sufficient to 

be anxiogenic, much like our laboratory’s model of PTSD.  However, the inactivation of 

the vmPFC did not facilitate any further anxiogenesis.  In fact, the reduced amount of 

time spent in the closed arms in both vehicle and muscimol unstressed rats supports the 

idea that these animals were less anxious than the stressed animals.   

 

Hippocampus 

 The hippocampal inactivation in stressed animals resulted in a blockade of the 

stress induced contextual fear memory, while sparing the cued fear memory.  These 

results supported the hypothesis that hippocampus modulates the contextual, but not 
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auditory cue information processed in close temporal proximity to fear learning in rats.  

Thus, this experiment illustrates the importance of the hippocampus in relation to the 

timing of contextual fear-memory formation.  These findings also provide validity of this 

stress procedure, per Yehuda & Antelman’s (1993) criteria, because the single “dose” of 

stress facilitated fear learning.  The lack of an effect on the EPM is possibly due to an 

anxiolytic effect of the cannulation via cellular remodeling after the surgery.  

(Dringenberg, Levine, & Menard, 2008) found one second of electrical stimulation of the 

dorsal but not the ventral hippocampus before behavioral testing reduced the amount of 

time rats spent in the open arms of an EPM.  Furthermore, (McEown & Treit, 2009) 

showed transient inactivation of the ventral and the dorsal hippocampus during 

acquisition of a defensive burying task (an anxiogenic type of fear conditioning) reduced 

anxiety-like responses when retention was tested in the burying apparatus.  However, 

only transient inactivation of the dorsal hippocampus after acquisition resulted in 

anxiolytic effects on the 24 hr test.  These reports indicate the hippocampus is involved in 

anxiety-like behaviors in rats and that the dorsal hippocampus is particularly important 

for contextual memory of aversive events.   

 

Limitations 

 The lack of effects on the startle behavior could have arisen from the fact that 

these animals underwent stereotaxic surgery, which usually results in the puncture of the 

tympanic membrane (Kaplan, Allan, & Wolf, 1983).  It is also possible that two stress 

sessions are necessary to generate the hyperarousal behaviors we observe in our PTSD 

model.  There is also indication from research in humans that startle is context dependent.  
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In a series of experiments Morgan and colleagues (Grillon, Morgan, Southwick, Davis, & 

Charney, 1996; Morgan, III, Grillon, Southwick, Davis, & Charney, 1995; Morgan, III et 

al., 1995) examined the startle response in PTSD patients and found PTSD patients 

exhibited greater startle throughout both baseline and threat conditions.  However, 

(Grillon, Morgan, Southwick, Davis, & Charney, 1996) examined the baseline startle 

response of Vietnam veterans with PTSD in a familiar environment and found no 

differences between startle responses of Vietnam veterans with or without PTSD and 

healthy control subjects.  Other studies (Grillon & Morgan, III, 1999; Grillon, Morgan, 

III, Davis, & Southwick, 1998; Pole, Neylan, Best, Orr, & Marmar, 2003) have found 

manipulations of the experimental context or the presentation of explicit threat cues 

consistently leads to enhanced startle responses in PTSD symptoms, indicating the 

exaggerated startle responses reported in PTSD patients is context dependent, and not 

necessarily a stable trait of these individuals.  Thus, testing startle in the fear-provoking 

context could have facilitated enhanced startle expression. 

There are methodological limitations of this investigation.  One limitation is the 

fact that only one type of GABA agonist was utilized to inactivate the brain regions of 

interest.  It is possible that the single administration of this powerful drug was sufficient 

to induce a general anxiolytic effect in treated animals.  Future investigations could 

determine whether inactivation of the prefrontal cortex or hippocampus using different 

pharmacological agents, such as lidocaine or tetrodotoxin result in similar findings.  

Another limitation arises from the 90 degree angle used in cannulae placement of these 

investigations.  This could account for the lack of cued fear conditioning in the prefrontal 

cortex manipulations from cortical damage from cannulae placement.  The fact that all of 
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the behavioral tests were done on the same animals; that is separate groups were not used 

to look at each behavior could have influence the results.  However, the most intriguing 

findings were found in the first and last behavioral tests, indicating that at least the non-

aversive memory effects are robust.   

 

General Conclusions 

 Overall, these studies have shown that the hippocampus and the prefrontal cortex 

are necessary to form long-term contextual fear memories.  Furthermore, these 

investigations call into question the current theories of how multiple brain regions 

interact to form traumatic memories.  If the prefrontal cortex “goes offline” during a 

traumatic experience and allows the amygdala to form a more emotional memory than 

usual, then the stressed rats with muscimol inactivation and the veterans with prefrontal 

damage (Koenigs et al., 2008) would both have had more robust fear and anxiety 

symptoms than has been reported.  This serendipitous finding calls into question the 

current theoretical framework that many researchers are using. 
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